Que 1:

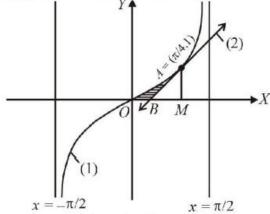
Find the area of the region bounded by the curve C: $y = \tan x$, tangent drawn to C at $x = \frac{\pi}{4}$ and the x-axis.

[1988 - 5 Marks]

solution:

The given curve is
$$y = \tan x$$
 ...(i)

Let A be the point on (i) where $x = \pi/4$


$$\therefore$$
 $y = \tan \pi/4 = 1$

So, co-ordinates of A are $(\pi/4,1)$

 $\therefore \quad \text{Equation of tangent at } A \text{ is } y - 1 = 2(x - \pi/4)$

or
$$y = 2x + 1 - \pi/2$$
 ...(ii)

The graph of (1) and (2) are as shown in the figure.

Tangent (2) meets x-axis at, $L\left(\frac{\pi-2}{4},0\right)$

Now the required area = shaded area

=
$$\Lambda$$
rea $OAMO - Ar(\Delta ABM)$

$$= \int_{0}^{\pi/4} \tan x \, dx - \frac{1}{2} (OM - OB) AM$$

$$= [\log \sec x]_{0}^{\pi/4} - \frac{1}{2} \left\{ \frac{\pi}{4} - \frac{\pi - 2}{4} \right\} . 1 = \frac{1}{2} \left[\log 2 - \frac{1}{2} \right] \text{ sq.units.}$$